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ABSTRACT

By means of elementary properties of the absolute value
function, important properties of a special class of
"“"constrained generalized median'" problems (and eventually,
the most general class, vide Charnes, Cooper, Thompson)
such as existence of solutions, gradient and incremented
formulae, linear programming and probabilistic interpre-
tations are obtained for all classes of joint distribution
functions for which the problems make sense. Results of
A. C. Williams and R. Wets obtained by involved arguments
and sophisticated constructs appear, when corrected, as
special instances of some of the above results but devoid
of the interrelations and interpretations herein adduced.

ii



1, Introduction

Recently the SIAM Journal has published two papers [1, 8] which present
elabérate claasifications and sophisticated constructions for two classes of
problems in probabilistic programming. Neither the authors of these papers,
nor their referees, appear to have recognized that the problem in [1] and the
problems in [ 8] (for example, the "complete" problem) are very special in-
stances of the class of ""constrained generalized median® problems first ciscus:
by Charnes, Cooper and Thompson in 1961.1—/ This canonical "median" formulzs
tion is not a matter of a choice of nomenclature. Its technical advantage in mar.
problems in probabilistic programming derives from bringing into immediate
focus the relevance of the absolute value function.

As we shall demonstrate below by means of the absolute value function we
easily (1) obtain, characterize and markedly extend the essential results of [1],
(2) interpret these results in linear programming and probabilistic terms, (3)
develop gradients and directional derivatives and intexpret probabilistically
incremental formulae in all generality, (4) place these results in the framework
of chance-constrained programming, and (5) reduce all cases to investigation of
the behavior of the objective function along a ray.

Before undertaking these develoﬁments and in order not to interrupt them
some important assertions and constructions in [1] require correction. The
problem in [1] is to choose a vector X 2 0 which maximizes the expected

T m
value of the function p "X + 3 g; (X,b),

i=1

1/ see reference [4]



where { i
(b1 - a'X) Y4 if b1 -aX <y
(bi - aX) 6i if bi -aXx>0,
and vy, > 5, -
Here ai,inl...m, is the 1th row of a given mxn wmatrix A,

Yy and 61,1-1...m, are given constants,

T

p 1is a given 1xn vector,

and bi,i-l,...,m, are random variables whose marginal distributions
are known,

Thus the problem is

T m
max E(p'X+ £ 8,(X,b))
i=1
(2) subject to X > 0,

where we compute the expectation using the joint distribution of the random vari-

ables bl,...,bm.

In (2), it is assumed that the vector X 1is to be selected before any ob-
servations are made on the random variables bi,i=1,...,m. Thus X 1is not per-
mitted to be a function of these random variables, but rather it must be a determin-

istic vector. Such a vector of decision rules is called a zero order decision rule

in the customary terminology of chance-constrained programming.l/ Thus, (2) is a
chance-constrained programming problem in which the chance constraints are of the
particularly simple form P(X > 0) > 1, in which the function whose expectation
we wish to maximize is a piecewise linear function of the vector of decision rules,

and in which we seek the optimal zero order rule.

1/

For results on zero order rules see references [2, 3, 4, 5, 6],



In the mathematical development presented in section 2, we first show that
(2) can be converted into a constrained generalized median problem of the type
discussed in [4]. This transformation enables us to use standard linear program-
ming methods in obtaining our results. It also permits us to indicate how these
results can be extended in two important directions: one is the case in which
gi(x,b) is a piecewise linear function of bl’ ,...,bm rather than only bi
as it is in (1); the other is the case in which X 1is subjected to other linear
constraints, say DX > d, in addition to the constraints X > 0. Neither of
these extensions are discussed in [1], and the téchniques used in [1] cannot be
readily extended to include these cases.

The main results in [1] are a pair of theorems which give necessary and
suffiéient conditions for the existence of an optimal solution to (2). We will
obtain most of these conditions in a much more direct manner than was used in
[1]. 1In particular, our proofs will require only well-known theorems in linear
programming and some elementary inequalities on the absolute value, and will not
require concepts such as Kakutani's fixed point theorem which were used in [1].
Neither will we require the elaborate specifications and restrictions of the
classes of probability distributions as used in [1J.

One result obtained in [1] characterizes the situation in which the objective
function of (2) is bounded from above, but the supremum of the function is not
attained for a finite X. Rather than deriving this particular result, we character-
1ze this situation in a constructive way by showing that it can be related to
the behavior of the objective function along a particular ray and by obtaining an

explicit expression for its limiting value.



First, however, we must correct some assertions in [1] about the admissible

class of random variables. In [1] it is assumed that F the cumulative dis-

1.

tribution function of b has at most a finite number of discontinuities in

i’
each finite interval. In our development in section 2 it will be clear that such
an assumption is never requireds when differentialabifity is not the main' focus.
We can, for example, admit random variables whose distribution function has pro-

bability mass at all the irrational paimts in an interval (or on the real line).

It is also assumed in [1] that Fi(-),inl,...m, satisfies the following con-

ditions:
3(a) lim z,F (z,) = 0,
ool t b
and
3(b) ziig+. zi[l'Fi(zi)] = 0.

A remark is then made [1, p. 930] to the effect that 3(a) and 3(b) are "sufficient
for (but slightly stronger than) the existence of the first moment of Fi(')'"

In actual fact, as we prove in theorem 2,3(a) and 3(b) are necessary for the exist-
ence of the first moment of Fi(-), but they are not sufficient. This can be
seen by the following example:

Let F(z) = ’ 1, z>-e

EEE

Then
-c
Am, @@= s, TRT-0
and zll$. z[1-F(z)] =0, as F(z) =1 for z > - e

Hence F(z) satisfies conditions 3(a) and 3(b). However, F(z) does not have a



first moment since

J". zdF(z) = e f-ez !'%lﬂi)—z> dz
- - \ z [In(-2z)]

1+ln(z) ds
e z[ln(z)]2

1

"oE e z[ln(z)]2

dz + e | In(In(e)) - lim [1n(1n(:)i1]
= - o, since the integral term is negative and tlgnhn[ln(ln(t))] = o, Thus E(z)
does not exist.

Conditions 3(a) and 3(b) are used repeatedly in [1] to guarantee that the in-

tegration by parts formula
x x
f.-fi(z) dz = xF (x) - lim  zF (z) - f.-zdFi(z)

is valid. But the above example shows that conditions 3(a) and 3(b) are not suf-
ficient to guarantee the validity of this integration formula since both integrals
diverge. On the other hand, the existence of E(z) 1is certainly a sufficient

condition for the formula to be meaningful.

2. Mathematical Development

We begin by introducing some notation. Let Y be an n-vector.

Then YT = Uyyls coes Iygls cons Iy D

and
PR .
Ely | = (Elyll, cees E,yil, - Elynl).

We will use IIYI' to denote the norm of Y.



From the definition of gi(x b) in (1) we have that
gi(x b).—i-<|b-ax|+(b-a}()) i((b -ax)-lb-ax')

Hence

8, + vy 6, + v 6, - y
E(gi(x, b)) .<-1—2——1> E(b,) - <—1—2-—1-) alx +<-1—2—1> Elb, - alx|
and
m ‘ m §, +vy
E(pT:H L g X, b)> - p'X + z-E<81(X. b)) -z <_1'2—'L> G
i=] i=1 1-1-
& + Y "y
+ Ry X+ 3 12 1>E|bi-aiX|
131 i=l

Thus, dropping the constant term (——-—-) E(b ) from the objective function,
i-].

(2) can be written as

T T
@) min h(X) = ¢’ X + A E|b - AX|
subject to X >0

where c-‘}I::l 61—-‘.li-a “ Py J=1 n

3 2 J% " Py e T

i=l
-8

and ai.—T— ’ i-l, e 00y m,

Also a 2 0 as we are given that Y, 2 61'

(4) is a constrained generalized median problem of the type discussed in [4].

The constraints are of the particularly simple form X > 0,
We first note that

Theorem 1l: h(X) is finite for some X ~ 0, in which case
h(X) 1is finite for all X > 0, if and only if Elbil <o for
all 1 such that a, >0 (i.e. Yy > 6.1)'

Proof: Using the well-known and elementary inequalities on the absolute value
we have that

- Iv]

ﬂAx |+ ‘bl <

< b - ax] < [o] + |ax]|



and so applying the expeccea value operator (which is order- pre-

serving) to both sides of the inequalities we get

(c’x * o¥|ax|) ¥ o E[b| < h(X) < (cTX + o' |AX]) + @ E[b].
This establishes the sufficiency and necessity of the stated

conditions:
Theorem 2: A necessary condition for Elbil < oo 1is that

lim tP{lbil gt% - 0.
t>o

Proof: Let y =(1, |b1|'5 t

0, [b|>¢

Then E[b,| = E(|b,|x,) + E@bil(l . x:’)
But by definition of the Lebesgue-Stieltjes (or Radon) integral,

E[b, | .::o E(Jb,|x. ) when E[b | < .
Thus E (Ibil(l -xt)> —>0 as t —> .

L J
But E(Ibil(l - xt)> = ftlblldFi(bi) > tP{Ibil > c} >0 for t > 0.
So when Elbil < o we have tPglbil g_t}—w as t—o00.
To see that the condition
1im tP{Ith > t} =0
t->+m

is equivalent to 3(a) and 3(b), note that
P{Ibil > t} = P(bi >t) + P(bi <-t) =1 - ’1“) + Fi(' t).

Hence we have 0 = lim e[l - Pi(t)] + :?1(- t{) ’
t—+m

and since Fi( ) is a nonnegative function, 3(a) and 3(b) immediate-

ly result,



Theorem 3: h(X) is bounded from below for all X > 0 if and only if there

exists a w satisfying

|v| <a

WA + et > 0.

Proof: By virtue of the inequality

’X + o’ |aX| - a"E|b| <h(X) <c’X +a’|aX| + oE[b|

obtained in the proof of theorem 1, it is enough to show that

cTx + a.rlel is bounded from below for all X > 0 if and only if

there exists a w satisfying |w| <2 and WA + et > 0.

To do this, we first note that the problem

min crx + aTIAxl

subject to X >0

5)

can be rewritten in the following linear programming form:
min X +a (¥’ +Y)
subject to Y+ -Y -AX =0
x, Y,y >0.
The dual to this problem is

max wI .

0
subject to - wTA < c.r
w <a
. "‘r < a'r
or
max wT + 0

subject to WA +ct >0

vl <a.



Since (5) is consistent (the origin is feasible), the extended dual
theorem of linear programming (see [7], vol. I, p. 190) states that
the objective function of (5) is cinite if and only if there is a
feasible solution to its dual, i.e. (6). Thus the theorem is proved.
To convert the result of theorem 3 to ﬁhe corresponding result in [1], we use

o Y - 6
our definitions of cT and a. Since o = 1—2—1 , Wwe see that lw | <a

v i © 4 Yt 8y .
means ——o— SW, < T . If we put mo=w, T , then the

condition Iw l <a becomes 61 ST oSy Similarly, since

j 1-1<6 i Yi> ij p , Wwe get that wTA + cT = nTA - pT, S0 wTA + cT >0
becomes n A > p . Thus we see that theorem 3 is analogous to the result in [1]
which says that the optimal value of the objective function to (2) is finite if and
only if there exists an m-vector n satisfying

#rA > 5!

and 8§ <Sm<y.
We not turn to an elucidation of what is termed in [1] the "insolublel/
finite" case. This is the situation we mentioned in the introduction in which

h(X) 1is bounded from below but its infimum is now attained for a finite X, 1i.e.

h(X) > inf h(X) for all X > 0.
x>0

Theorem 4: As t—oo, E bi -tq|~ |[tq - E(bi)’ q>0
E(bi) -tq, q <0
Elbil » q =0,
where we use the symbol ~ to mean that the difference between the

two quantities tends to zero as t-—m.

1/

='This terminology is peculiar since not only is it not insoluble but we here
explicitly write down the optimal value of the objective function for

this case. This is done in the corollary to theorem 4,



Proof:

10

Define the function xcq_- xtq(bi) = 1, bi <tq .

O,b _>_tq.

i
Then E[b, - tq| = E[(b - tq)(1 - Xeq)] +H (tq - by %)

-(E(bi) - 2E(bixcq)> + tqP(b, <tq) - P(d, > tq)].

But E(b q)N o0, q<0 a t—ro ,

iXe
E(bi)’ q>0
and the second term on the right approaches tq 1if q >0 and

-tq 1f q <0. Thus the theorem is proved.

Now fix X and defiae IO = {i $ aix = 0} . Let bl’ = - bi sgn (31)()

2
and bi =

Corollary:

Proof:

Theorem 5:

Proof:

bi i ieIo . Then we have
o, 1,{10

As t>m, h(tX)~ t[c'X + of|AX|] + o [E(BY) + E[bY]].

h(tX) = tc X + o E|b = tAX] ~ tc'X + I oaiElbil
iel

i i
+ ZIO a, sgn (ax)[ta’x - E(bi)]

- t[ch + aTIAXIJ + aT[E(bl) + E|b2|] .

t
Suppose that h (Xn)-——>v0

X >0, “XnH-—>oo as n—o, where voagg h(X).

for some sequence éxng with

Then ch +c.T|A§| =0 for some Y > 0 with ITY.H =1,

Since the set S1 : éx: HXH =1, X> Og 1s compact, the set

xn } has a limit point Y in §S,. Moreover, there exists some

1
n
subsequence, which we denote by EYHS » such that Yn——> Y as

n‘%‘m .
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Now

(7)
1

= (chn+ aTIAxn|)== cTYn+ GTIAYnl 3¢ +al|aY| asn .
|
n

However, cTXn+ aTlAan is bounded from below since h(Xn) > Vo
. g T T T
This follows from the inequality (¢’ X + Q IAXI) - Q E|b| < h(X)
< (Tx "+ of|ax]y + o®Elb|. Thus, in particular, chn+ aTlenl
remains bounded while || th - @, Hence, from {7), we conclude
that the left hand side goes to zero while <Y + aIIA?I =03
Thus the theorem is proved.
Theorem 6:
A necessary and sufficient condition that lim h(tX)= inf h(tX) is that
T T t -+ t =0
¢ X + o |ax|=0.
Proof: Assume hxh = 1 since the conclusion is trivial for X=0 and
T T . .y T T
cX+0Q |AX| is positive homogeneous. Suppose ¢ X + Q |AX| =0. The

Corollary to Theorm 4 guarantees that 1im h(tX) = lim ¢t [cTX + aT!AX|]+
t-> @ t—> ®

aTEb*+ oTE|b?|, so that the facts that c X + Gl |AX|=0 and that Elb |< =

for all i prove that lim h(tX) exists and is finite. Now suppose that

ENES]
there is a ts such that inf h(tX)= h(toX). Since h(tX) is a convex func-
t =0
tion of t, h(%tox+ % tX) = % [h(tOX)+ h(tX)J for all t. But lim h(tX) =
t—> @
lim h(at X +itx) = v, so that v <L h(e x)+ L v, or v S h(t X). Since
> @ 20 2 o o 2 o 2 o ) )
h(t X)Sv_ by definition of t_, we have shown inf h(tX)= h(t X)=v =
o o o £20 o o
lim h(tX) when t_ exists; if there is no such t than a fortiori
@ o =
t—> @
inf h(tX) = lim h(tX).
t=0 0

To prove the converse, note that if Xn= tnX for some sequence having
X

t =, than -

0 = X for all n. Theorem 5 then immediately yields

anH
the desired results.

We cast the following evident observation as a theorem because of
its practical utility:
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Theorem 7: inf h(X) = inf inf h(tX).
X20 IX||=1 t=0

The usefulness of this observation rests on Theorem 6. In appli-
cations it may happen that there is only one X with “i“ = 1 for which
cTi + GTIAE' = 0. In cases such as this, Theorem7 shows that one can
approximate the value of isaas closely as desired at some finite X by
considering only ray minima for rays tX with X sufficiently near % -

However, it should be expressly noted that these "knife-edge'
infinite ray cases can never appear as solutions to practical problems.
Rather they exhibit an inadequacy of realistic formulation of the model.
We develop their properties here only for completeness of analysis.

We now turn to the development of incremental formulae and their
interpretation in probabilistic terms. It should be noted that, again,

elementary properties of absolute values quickly and naturally lead to

results in all generality.
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3. The Increment and the Radial Directional Derivative of h(X).

We now give expressions in terms of the probabilities of the various b
versus AX events for the increment of h(X) (i.e., h(X + €) - h(X) ) and
for the directional derivative %E-h(tx) whenever the latter exists., The ex-

pressions are free of any restrictions as to the character of the distributions

of the b,
First, on inspecting figure 1 below, we note that, for e > 0,
€ , W <a
f(u)= |u - (a+€)| - |u-a|=de+2(a-u),a<u<a+é
-€ ,u>a+é .,

f(u)

+6

— Bl = = - - e

Figure 1
Thus, if u 1is a random variable with finite expectation,
Eu<|u-(a+e)l - |u-a|) = e[P(u < a+e) - P(u > a+e)] + [g-.;+2a-2 <a+ee(eD]P(a_§ u < a+€)
for some 0 <©(g) <1 by the mean value theorem. In other words,

(8) E, (lu-(a+e)| - Iu-a|> = ¢[P(u < a+€) - P(u > a+€) - 26(e)P(a <u < a+e)],



14

But
iL T
h(X+€) - h(X) = c g+aE<|b - &x - ag| - |b -AxD .
so if we use (8) we get, using P(b > AX) to denote the vector whose components are

P(bi > aix),

(9) h(X+£) - h(X) = c € + oa'D(AE) | P <b <A(X +£) - P(b>A(X+5))

- 2D <e (Jagl) p(ax <b <A(X+§)>

where D(y) denotes the diagonal matrix whose diagonal consists of the components
of the vector y and where o(]Ag]) = (él('algl)’ cens Gm(lam§|i> with
0< ei(laigl) < 1. Thus we have an expression for the increment of h(X), and
thereby an expression for any possible directional variation, in terms of the
probabilities of various events. Clearly then,'any conditions on the probability
distributions involved in b which guarantee that P(AX <b < A(X+E))—>0 as
l,g'l—e—O will guarantee the existence of a gradient of h(X) at X.

We now specialize (9) as follows: In (9) replace X by tX and £ by €EX.

Then we get

h(t+€)X = h(tX) = cT (ex) + aTD(AeX) |:P <b <A(t+€)X> - P (b > A(t+e)x>

-2D (e(l%xl)) P <At:X <b <« A(t+e)X)] = e{ch + u,TD(AX) [P (b < (t+e)AX)
-P <b > (c+e)Ax> - 2D (Q(IAXI)>P<CAX <b < (t+e)Ax>]E.

Then as t—o0 we get, for any fixed € > 0,

(10) s ((”@é) (X)) Ty + of|ax| .

Thus, if the left hand side of (10) has a limit as ¢—0, we see that the directional
derivative ag h(tX) 1is given by

lim

d T
(11) ¢ oo e BEX) = c

X + o |ax| .
It is clear that computational methods can be based on our expressions (9), (10)

and (11), but we shall reserve these developments for another occasion.
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4. Extensions

The special model treated in [1] is rarely of any real-world or economic-
theoretical significance because many.constraints cannot be expressed adequately
by "linear" penalty functions. As a simple reminder, note that X must be
bounded, although of course the specification of the bounds may involve inter-
relations between groups of the individual vaFiables. We have chosen to develop
our results for clarity and ease of comparison in the context of [1]. However,
it should be obvious on reflection that practically all the developments of the
preceding sections can be extended to the case where there are additional linear
inequality constraints on X 1in (2).

For example, consider the extension of theorem 3 to the case where X must
also satisfy DX > d. Then our proof of theorem 3 requires only the obvious

modification of the dual problem, Thus we get

Theorem 8: 1If the constraints DX > d, X > 0 are consistent, the optimal value
of the objective function for the problem

min c'X + @ E[b - AX]

subject to DX > d

X>0

is finite 1f and only if there exist vectors w and v satisfying

-wIA + VTD

vl

v

<

<a

2 0 .

A much more significant extension of the general model follows from observing "

that the linear constraints DX > d

can be considered to be the deterministic

equivalent constraints for chance constraints P(DX <b) > . This follows from
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the fact that since X 1s a zero order rule, the chance constraints can be re-
placed by the equivalent set of deterministic constraints DX < F-l(l-B), where
F-l(l-B) is the vector of F;I(I-Bi), the (I-Bi) fractile point of the marginal

distribution of bi'

It is also evident that modifying the objective function to the form

min ch + Ele - AX',

where G 1is a given mxm matrix, does not affect the proof of our theorems.

Thus our results hold for the very general class of constrained generalized median

models discussed in [4].

Finally, it should be noted that the so-called "complete" probleml/ of
linear programming under uncertainty is merely another special instance of the
constrained gencralized median problem, and as such falls under our and the previous

analysis in 4,
To sece this we merely observe that the'complete problem can be written as

T m
min ¢’X +E( I g (X,b)
i=1
s.to ng d
X>0
i i
I ) = 2
where gl(X b) = (b1 - a x)yi if bi -aX<90
i i
(bi - a x)6i if bi -aX>0o,

This formulation is obtained by expressing the second stage decision variables

in terms of the first stage decision variables X.

l/See (8],page 102.
"Completely slacked" might be more appropriate since 'complete' implies generality °
rather than the speciality actually involved,
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